113 Class Problems: Actions and Permutation Groups

1. Prove that for $n \in \mathbb{N},\left|S y m_{n}\right|=n$!.

Solution:
Let $f \in$ Sym $_{n}$. f is determined by $\{f(1), f(2), \ldots, f(n)\}$ $4 n 7$ is a bijection there are n choices for $7(1)$, $n-1$ choices for $f(2), \ldots . \Rightarrow\left|s_{y} m_{n}\right|=n \times(n-1) \times(n-2) \times \ldots \times 1=n$!
2. Let $S=\{A, B, C\}$ where A, B and C are the vertices of an equilateral triangle. Define an action of $\mathbb{Z} / 6 \mathbb{Z}$ on as follows:
Given $[a] \in \mathbb{Z} / 6 \mathbb{Z}$ and $X \in S,[a](X)=$ clockwise rotation of X about the center of the triangle by angle $\frac{2 \pi a}{3}$. For example:

$$
\Rightarrow \quad \begin{aligned}
& {[13(A)=B} \\
& \Rightarrow \quad[1](B)=C \\
& \cos (C)=A
\end{aligned}
$$

(a) Prove that this action is well defined, i.e if $a \equiv b \bmod 6$, then $[a](X)=[b](X)$ for all $X \in S$. Prove it is an action.
(b) Is this action faithful?

Solution:
a)

$$
\begin{aligned}
& {[a]=[b] \Rightarrow a=b+96, q \in \mathbb{Z}} \\
& {[a](x)=\text { rotation of } x \text { by } \frac{2 \pi a}{3}=\frac{2 \pi(b+96)}{3}=\frac{2 \pi b}{3}+4 \pi 7} \\
& =\text { rotation of } x \text { by } \frac{2 \pi b}{3} \\
& =[6](x)
\end{aligned}
$$

$y \quad[0](x)=x \quad \forall x \in S$
$2([a]+[b])(x)=[a+b](x)=$ Rotation of x by $\frac{2 \pi(a+6)}{3}$
$=$ Rotation of x by $\frac{2 \pi b}{3}$, follow by rotation $\operatorname{Ly} \frac{2 \pi a}{3}$

$$
=[a]([b](x))
$$

6) No $\cos (x)=x=[3](x) \quad \forall x \in S$, however $[0]=[3]$
3. Prove that there is no faithful action of $\mathbb{Z} / 11 \mathbb{Z}$ on the set $\{1,2,3,4,5\}$.

Solution:
If $\varnothing: \mathbb{Z} / \| \mathbb{Z} \longrightarrow$ Syms was faithful $\Rightarrow \varnothing$ injectrve

$$
\Rightarrow \mathbb{Z}_{\| \mathbb{Z}} \cong \operatorname{Im}(\phi) \quad \Rightarrow \quad|\operatorname{Im}(\phi)|=1
$$

$\operatorname{Im}(\phi) C$ Sym is o salgroug, han $|\operatorname{Im}(\phi)||\mid$ gyms $|$
However $11 / 5!$, hand no such action exists
4. Prove that if $|S|>2, \Sigma(S)$ is non-Abelian.

Solution:
Let $a, b, c \in S$ sum the $a \neq b, a \neq c, b \neq c$
Let $f, g \in Z(s)$ be defined as follows:

$$
f(x)=\left\{\begin{array}{ll}
a & \text { if } x=b \\
b & \text { it } x=a \\
x & \text { it } x \neq a, x \neq b
\end{array} \quad g(x)=\left\{\begin{array}{lll}
c & \text { if } & x=b \\
b & \text { it } & x=c \\
x & \text { if } & x \neq c, x \neq 6
\end{array}\right.\right.
$$

Consider $(f \circ g)(a)$ and $(g \circ f)(a)$

$$
\begin{aligned}
& (f \circ g)(a)=f(g(a))=f(a)=b \\
& (g \circ f)(a)=g(f(a))=f(b)=c
\end{aligned} \quad \Rightarrow \text { fog } \neq g \circ 4
$$

