113 Class Problems: Actions and Permutation Groups

1. Prove that for $n \in \mathbb{N}$, $|Sym_n| = n!$. Solution:

Let $f \in Sym_n$. f is determined by $\{f(1), f(2), \dots, f(n)\}$ An f is a bijection there are n choices fm = f(1), n - 1 choices for $f(2), \dots$. $= \sum_{i=1}^{n} |Sym_n| = n \times (n - 1) \times (n - 2) \times \dots \times 1 = n!$

2. Let $S = \{A, B, C\}$ where A, B and C are the vertices of an equilateral triangle. Define an action of $\mathbb{Z}/6\mathbb{Z}$ on as follows:

Given $[a] \in \mathbb{Z}/6\mathbb{Z}$ and $X \in S$, [a](X) = clockwise rotation of X about the center of the triangle by angle $\frac{2\pi a}{3}$. For example:

- (a) Prove that this action is well defined, i.e if $a \equiv b \mod 6$, then [a](X) = [b](X) for all $X \in S$. Prove it is an action.
- (b) Is this action faithful?

Solution:

a)
$$[a] = [b] = a = b + q6$$
, $q \in \mathbb{Z}$
 $[a](x) = rotation of X by $\frac{2\pi a}{3} = \frac{2\pi (b + q6)}{3} = \frac{2\pi b}{3} + 4\pi q$
 $= rotation of X by $\frac{2\pi b}{3}$
 $= [b](x)$
 $\downarrow [a](x) = x \forall x \in S$
 $\downarrow ([a] + [b])(x) = [a + b](x) = Rotation of X by $\frac{2\pi 6 + 6}{3}$
 $= Rotation of X by $\frac{2\pi b}{3}$, follow by rotation by $\frac{2\pi a}{5}$
 $= [a]([b](x))$$$$$

6) No $(\sigma](x) = x = [3](x) \forall x \in S$, however $[\sigma] = [3]$

3. Prove that there is no faithful action of $\mathbb{Z}/11\mathbb{Z}$ on the set $\{1, 2, 3, 4, 5\}$. Solution:

$$If \ \beta : \mathbb{Z}/_{WZ} \longrightarrow Sym_{s} \text{ was } \text{faith} \neq a \ => \ \beta \text{ injective}$$

$$=> \ \mathbb{Z}/_{WZ} \cong Im(\beta) \implies |Im(\beta)| = 11$$

$$Im(\beta) \subset Sym_{s} \text{ is o subgroup, hence } |Im(\beta)| ||Sym_{s}|$$
However $|1| / 5!$, hence no salth action exists

4. Prove that if |S| > 2, $\Sigma(S)$ is non-Abelian.

Let $a, b, c \in S$ such that $a \neq b, a \neq c, b \neq c$ Let $f, g \in Z(S)$ be defined as follows: $f(x) = \begin{cases} a \vec{n} x = b \\ b \vec{n} x = a \\ d \vec{n} x = a \end{cases} \qquad \begin{cases} c \vec{n} x = b \\ b \vec{n} x = c \\ (x \vec{n} x = a + b) \end{cases} \qquad \begin{cases} c \vec{n} x = b \\ b \vec{n} x = c \\ (x \vec{n} x = a + c, x \neq b) \end{cases}$ Consider (4 og)(a) and (9 of) (a)